Introducción a las Comunicaciones Electrónicas

 


SISTEMAS ELECTRÓNICOS DE COMUNICACIONES

La fig. 1-1 muestra un diagrama de bloques simplificado de un sistema electrónico de comunicaciones, que comprende un transmisor, un medio de transmisión y un receptor. Un transmisor es un conjunto de uno o más dispositivos o circuitos electrónicos que convierte la información de la fuente original en una señal que se presta más a su transmisión a través de determinado medio de transmisión. El medio de transmisión transporta las señales desde el transmisor hasta el receptor, y puede ser tan sencillo como un par de conductores de cobre que propaguen las señales en forma de flujo de corriente eléctrica. También se puede convertir la información a ondas electromagnéticas luminosas, propagarlas a través de cables de fibra óptica hechas de vidrio o de plástico, o bien se puede usar el espacio libre para transmitir ondas electromagnéticas de radio, a grandes distancias o sobre terreno donde sea difícil o costoso instalar un cable físico. Un receptor es un conjunto de dispositivos y circuitos electrónicos que acepta del medio de transmisión las señales transmitidas y las reconvierte a su forma original.

MODULACIÓN Y DEMODULACIÓN

Como a menudo no es práctico propagar señales de información a través de cables metálicos o de fibra óptica, o a través de la atmósfera terrestre, con frecuencia es necesario modular la información de la fuente, con una señal analógica de mayor frecuencia, llamada portadora. En esencia, la señal portadora transporta la información a través del sistema. La señal de información modula a la portadora, cambiando su amplitud, su frecuencia o su fase. Modulación no es más que el proceso de cambiar una o más propiedades de la portadora, en proporción con la señal de información.

La modulación se hace en un transmisor mediante un circuito llamado modulador. Una portadora sobre la que ha actuado una señal de información se llama onda modulada o señal modulada.  La demodulación es el proceso inverso a la modulación, y reconvierte a la portadora modulada en la información original (es decir, quita la información de la portadora). La demodulación se hace en un receptor, con un circuito llamado demodulador.


Hay dos razones por las que la modulación es necesaria en las comunicaciones electrónicas: 1) Es en extremo difícil irradiar señales de baja frecuencia en forma de energía electromagnética, con una antena, y 2) ocasionalmente, las señales de la información ocupan la misma banda de frecuencias y si se transmiten al mismo tiempo las señales de dos o más fuentes, interferirán entre sí.  Por ejemplo, todas las estaciones comerciales de FM emiten señales de voz y música que ocupan la banda de audiofrecuencias, desde unos 300 Hz hasta 15 kHz. Para evitar su interferencia mutua, cada estación convierte a su información a una banda o canal de frecuencia distinto. Se suele usar el término canal para indicar determinada banda de frecuencias asignada a determinado servicio. Un canal normal de banda de voz ocupa más o menos 3 kHz de ancho de banda, y se usa para transmitir señales como las de voz; los canales comerciales de emisión en AM ocupan una banda de frecuencias de 10 kHz, y en los canales de radio de microondas y vía satélite se requiere un ancho de banda de 30 MHz o más.


La fig. 1-2 es el diagrama simplificado de bloques de un sistema electrónico de comunicaciones, donde se ven las relaciones entre la señal moduladora, la portadora de alta frecuencia y la onda modulada.


EL ESPECTRO ELECTROMAGNÉTICO

El objetivo de un sistema electrónico de comunicaciones es transferir información entre dos o más lugares, cuyo nombre común es estaciones. Esto se logra convirtiendo la información original a energía electromagnética, para transmitirla a continuación a una o más estaciones receptoras, donde se reconvierte a su forma original. La energía electromagnética se puede propagar en forma de voltaje o corriente, a través de un conductor o hilo metálico, o bien en forma de ondas de radio emitidas hacia el espacio libre, o como ondas luminosas a través de una fibra óptica. La energía electromagnética se distribuye en un intervalo casi infinito de frecuencias.

La frecuencia no es más que la cantidad de veces que sucede un movimiento periódico, como puede ser una onda senoidal de voltaje o de corriente, durante determinado periodo. Cada inversión completa de la onda se llama ciclo. La unidad básica de frecuencia es el hertz (Hz), y un hertz es igual a un ciclo por segundo (1 Hz = 1 cps). En electrónica se acostumbra usar prefijos métricos para representar las grandes frecuencias. Por ejemplo, se usa el kHz (kilohertz) para indicar miles de hertz, y el MHz (megahertz) para indicar millones de hertz.



Frecuencias de transmisión

El espectro electromagnético de frecuencias total, donde se muestran los lugares aproximados de diversos servicios, se ve en la fig. 1-3. Este espectro de frecuencias va desde las subsónicas (unos pocos hertz) hasta los rayos cósmicos (1022 Hz).  

El espectro de frecuencias se subdivide en subsecciones o bandas. Cada banda tiene un nombre y sus límites. En los Estados Unidos, las asignaciones de frecuencias para radio propagación en el espacio libre son realizadas por la Comisión Federal de Comunicaciones (FCC).  Por ejemplo, la banda de emisión comercial en FM tiene asignadas las frecuencias de 88 MHz a 108 MHz. Las frecuencias exactas asignadas a transmisores específicos que funcionan en las diversas clases de servicio se actualizan y alteran en forma constante, para cumplir con las necesidades de comunicaciones en una nación.

El espectro total útil de radiofrecuencias (RF) se divide en bandas de frecuencia más angostas, a las que se dan nombres y números descriptivos, y algunas de ellas se subdividen a su vez en diversos tipos de servicios. Las designaciones de banda según el Comité consultivo internacional de radio (CCIR) se muestran en la tabla 1-1.


Clasificación de los transmisores

Para fines de registro en Estados Unidos, los radiotransmisores se clasifican según su ancho de banda, esquema de modulación y tipo de información. Las clasificaciones de emisión se identifican con una clave de tres símbolos, que contiene una combinación de letras y números, como se ve en la tabla 1-2. El primer símbolo es una letra que indica el tipo de modulación de la portadora principal. El segundo símbolo es un número que identifica al tipo de emisión, y el tercer símbolo es otra letra que describe el tipo de información que se transmite. Por ejemplo, la designación A3E describe una señal por doble banda lateral, portadora completa, de amplitud modulada, que conduce información telefónica, de voz o de música.


ANCHO DE BANDA Y CAPACIDAD DE INFORMACIÓN


El ancho de banda de una señal de información no es más que la diferencia entre las frecuencias máxima y mínima contenidas en la información, y el ancho de banda de un canal de comunicaciones es la diferencia entre las frecuencias máxima y mínima que pueden pasar por el canal (es decir, son su banda de paso). El ancho de banda de un canal de comunicaciones debe ser suficientemente grande (ancho) para pasar todas las frecuencias importantes de la información. En otras palabras, el ancho de banda del canal de comunicaciones debe ser igual o mayor que el ancho de banda de la información. Por ejemplo, las frecuencias de voz contienen señales de 300 a 3000 Hz. Por consiguiente, un canal para frecuencias de voz debe tener una amplitud igual o mayor que 2700 Hz (3000 Hz a 300 Hz). Si un sistema de transmisión de televisión por cable tiene una banda de paso de 500 a 5000 kHz, su amplitud de banda es 4500 kHz. Como regla general, un canal de comunicaciones no puede propagar una señal que contenga una frecuencia que cambie con mayor rapidez que la amplitud de banda del canal.

La teoría de la información es el estudio muy profundo del uso eficiente del ancho de banda
para propagar información a través de sistemas electrónicos de comunicaciones. Esta teoría
se puede usar para determinar la capacidad de información de un sistema de comunicaciones.  La capacidad de información es una medida de cuánta información se puede transferir a través de un sistema de comunicaciones en determinado tiempo. La cantidad de información que se puede propagar en un sistema de transmisión es una función del ancho de banda y del tiempo de transmisión. R. Hartley, de los Bell Telephone Laboratories, desarrolló en 1920 la relación entre el ancho de banda, el tiempo de transmisión y la capacidad de información. La ley de Hartley sólo establece que mientras más amplio sea el ancho de banda y mayor sea el tiempo de transmisión, se podrá enviar más información a través del sistema.


MODOS DE TRANSMISIÓN

Los sistemas electrónicos de comunicaciones se pueden diseñar para manejar la transmisión sólo en una dirección, en ambas direcciones, sólo en una a la vez, o en ambas direcciones al mismo tiempo. A éstos se les llama modos de transmisión. Hay cuatro modos de transmisión posibles: símplex, semidúplex, dúplex y dúplex/dúplex.

Símplex (SX)

Con el funcionamiento símplex, las transmisiones sólo se hacen en una dirección. Aveces, a los sistemas símplex se les llama sólo en un sentido, sólo recibir o sólo transmitir. Una estación puede ser un transmisor o un receptor, pero no ambos a la vez. Como ejemplo de transmisión símplex está la emisión comercial de radio o televisión: la estación de radio sólo transmite a uno, y uno siempre recibe.

Semidúplex (HDX, de half duplex)

En el funcionamiento semidúplex, las transmisiones se pueden hacer en ambas direcciones, pero no al mismo tiempo. A veces, a los sistemas semidúplex se les llama de alternar en ambos sentidos, en uno de los sentidos, o de cambio y fuera. Una estación puede ser transmisora y receptora, pero no al mismo tiempo. Los sistemas de radio en dos sentidos que usan botones para hablar (PTT, de push-to-talk) para conectar sus transmisores, como son los radios de banda civil y de policía, son ejemplos de transmisión en semidúplex.

Dúplex total (FDX, de full duplex)

Con el funcionamiento dúplex total, o simplemente dúplex, puede haber transmisiones en ambas direcciones al mismo tiempo. Aveces, a los sistemas dúplex se les llama simultáneos de dos direcciones, dúplex completos o líneas bilaterales o en ambos sentidos. Una estación puede transmitir y recibir en forma simultánea; sin embargo, la estación a la que se transmite también debe ser de la que se recibe. Un sistema telefónico normal es un ejemplo de funcionamiento dúplex.

Dúplex total/general (F/FDX, de full/full duplex)

Con la operación en dúplex total/general es posible transmitir y recibir en forma simultánea, pero no necesariamente entre las mismas dos estaciones (es decir, una estación puede transmitir a una segunda estación, y recibir al mismo tiempo de una tercera estación). Las transmisiones dúplex total/general se usan casi exclusivamente en circuitos de comunicaciones de datos. El Servicio Postal en Estados Unidos es un ejemplo de funcionamiento en dúplex total/general.

CONFIGURACIONES DE LOS CIRCUITOS

Los circuitos de comunicaciones electrónicas se pueden configurar en varias formas distintas. A esas configuraciones se les llama arreglos de circuito, y pueden abarcar la transmisión a dos y a cuatro hilos.

Transmisión a dos hilos

Como su nombre implica, la transmisión a dos hilos usa dos conductores, uno para la señal y
otro para una referencia, o tierra, o bien una configuración de circuito que es equivalente a sólo dos conductores. Los circuitos de dos hilos se adaptan en forma ideal a la transmisión símplex, aunque se pueden usar en transmisiones semidúplex y dúplex. La línea telefónica entre el hogar del lector y la central más cercana es un circuito a dos hilos.

La fig. 1-5 muestra los diagramas de bloques para dos configuraciones distintas de circuito
a dos hilos. En la fig. 1-5a se ve la más sencilla, que es un circuito pasivo formado por dos
conductores que conectan a una fuente de información, a través de un transmisor, con un destinatario en el receptor. Los conductores mismos son capaces de transmitir en dos sentidos, pero el transmisor y el receptor no lo son. Para intercambiar información en dirección opuesta habría que cambiar los lugares del transmisor y el receptor. Por consiguiente, esta configuración sólo es capaz de transmitir en un sentido, y no incorpora ganancia a la señal. Para lograr una transmisión semidúplex con un circuito de dos hilos habría que tener un transmisor y un receptor en cada estación, que deberían estar conectados al mismo par de conductores, en una forma tal que no interfieran entre sí.

La fig. 1-5b muestra un circuito activo a dos hilos (es decir, uno que incorpora ganancia).
Con esta configuración, un amplificador se intercala en el circuito, entre el transmisor y el receptor.  El amplificador es un dispositivo unidireccional y en consecuencia limita las transmisiones sólo a una dirección.

Para lograr las funciones de semidúplex o dúplex con un circuito de dos hilos, habría
que alterar la información que viaja en direcciones opuestas de tal modo, o por algún método que convierta la fuente en destino y el destino en fuente. Se puede lograr la transmisión semidúplex con un circuito de dos hilos usando alguna forma de modulación, para multiplexar o combinar las dos señales de tal modo que no se interfieran entre sí, pero que todavía se puedan separar, o reconvertir a su forma original en el receptor. Después, en este libro, se describirán tanto la modulación como el multiplexado.


Transmisión a cuatro hilos

En la transmisión a cuatro hilos se usan cuatro conductores, dos en cada dirección: de señal y de referencia o tierra, o bien una configuración de circuito que equivalga a cuatro conductores. Los circuitos de cuatro hilos se adaptan idealmente a la transmisión dúplex. La fig. 1-6 muestra el diagrama de bloques de un sistema activo de cuatro hilos. Como allí se ve, un circuito de cuatro hilos equivale a dos circuitos de dos hilos, uno para cada dirección de transmisión. Con el funcionamiento con cuatro hilos, el transmisor en un lugar se conecta, a través de un medio de transmisión, con el receptor en la otra estación, y viceversa. Sin embargo, en determinada estación los transmisores y receptores se pueden trabajar en forma totalmente independiente unos de otros. Existen varias ventajas inherentes de los circuitos con cuatro hilos sobre los de dos hilos.  Por ejemplo, los de cuatro hilos son bastante menos ruidosos y proporcionan más aislamiento entre las dos direcciones de transmisión cuando se opera en semidúplex o en dúplex. Sin embargo, los circuitos de dos hilos requieren menos conductor, menos circuitos y por consiguiente, menos inversión, que sus contrapartes de cuatro hilos. Las ventajas y desventajas de los circuitos con dos y cuatro hilos se apreciarán más a medida que el lector continúe su estudio de comunicaciones electrónicas.





Híbridos y supresores de eco

Cuando se conecta un circuito de dos hilos con uno de cuatro hilos, como por ejemplo en las llamadas telefónicas de larga distancia, se usa un circuito de interconexión, o de interfaz, llamado híbrido o equipo terminador, para efectuar la interfaz. El conjunto híbrido se usa para compensar impedancias y proporcionar aislamiento entre las dos direcciones de flujo de la señal.

La fig. 1-7 muestra el diagrama de bloques para conectar una red híbrida, de dos hilos con
cuatro hilos. La bobina híbrida compensa las variaciones de impedancia en la parte del circuito que tiene dos hilos. Los amplificadores y los atenuadores ajustan los voltajes de señal a los valores requeridos, y los igualadores compensan defectos en la línea de transmisión que afectan la respuesta en frecuencia de la señal transmitida, como pueden ser la inductancia, la capacitancia y la resistencia de la línea. Las señales que van de oeste a este (W-E) entran al terminador desde la línea de dos hilos, donde se acoplan inductivamente en la sección transmisora de oeste a este, del circuito a cuatro hilos. Las señales recibidas de la línea se acoplan en la sección receptora de este a oeste del circuito a cuatro hilos, donde se aplican a las tomas centrales de las bobinas híbridas. Si las impedancias de la línea de dos hilos y de la red de balanceo se compensan en forma adecuada, todas las corrientes producidas por la señal E-W en la mitad superior del híbrido, serán de magnitud igual pero de polaridad opuesta. En consecuencia, los voltajes inducidos en los secundarios estarán desfasados 180° entre sí y, por lo tanto, se anularán. Esto evita que cualquier parte de la señal recibida se regrese al transmisor en forma de eco.  Si no se compensa la impedancia de la línea de dos hilos con la de la red equilibradora, los voltajes inducidos en los secundarios de la bobina híbrida no se anularán por completo.  Este desequilibrio hace que una parte de la señal recibida regrese al emisor, en la parte W-E del circuito de cuatro hilos. Quien habla oye como eco la parte regresada de la señal y, si la demora de esta señal en su ida y vuelta es mayor de unos 45 ms, el eco puede volverse bastante molesto. Para eliminarlo se insertan los llamados supresores de eco en un extremo del circuito de cuatro hilos.


La fig. 1-8 muestra un diagrama de bloques simplificado de un supresor de eco. El detector de voz siente la presencia y la dirección de la señal. Entonces activa al amplificador en la dirección correcta y desactiva al amplificador en la dirección opuesta, evitando así que el eco regrese a quien habla. Si la conversación cambia rápidamente de dirección, la persona que escucha puede oír cuando el supresor de eco se enciende y se apaga, ya que cada vez que un supresor de eco detecta la voz y se activa, el primer instante de sonido se elimina del mensaje, y se obtiene una voz entrecortada. Con un supresor de eco en el circuito no puede haber transmisiones en ambas direcciones al mismo tiempo y, por consiguiente, la operación del circuito se limita a semidúplex. Las compañías comunes de larga distancia, como AT&T, por lo general ponen supresores de eco en circuitos de cuatro hilos de longitud mayor a 1500 millas eléctricas (ya que mientras más largo es el circuito, la demora por ida y vuelta es mayor).